Meeting Banner
Abstract #3676

Automatic venous vessel segmentation in high field, multi-echo SWI using Random Forests

Albert Rechberger1,2, Barbara Dymerska2, Karin Poljanc3, Georg Langs1, and Simon Daniel Robinson2

1Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria, 2High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria, 3Atominstitut, TU Wien, Vienna, Austria

A method for automatic venous vessel segmentation is presented that uses a Random Forest classifier supplied with a number of appearance and shape features computed separately from magnitude images, phase images and QSMs of a multi-echo T2*-weighted GE scan. The importance of each feature, and thus each echo, is investigated. The approach was tested on whole-brain 7T scans of four subjects, two of which were manually annotated, and was effective in segmenting both internal and surface veins.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords