We propose a novel approach to designing optimal k-space sampling patterns for sparsity-constrained MRI. The new approach, called OEDIPUS (Oracle-based Experiment Design for Imaging Parsimoniously Under Sparsity constraints), is inspired by insights and methods from estimation theory and the statistical design of experiments. Specifically, OEDIPUS combines the oracle-based Cramér-Rao bound for sparsity-constrained reconstruction with sequential greedy algorithms for observation selection. We demonstrate that OEDIPUS can be used to deterministically and automatically generate k-space sampling patterns that are tailored to specific hardware and application contexts, and which lead to better reconstruction performance relative to conventional sampling approaches for sparse MRI.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords