Meeting Banner
Abstract #4292

New resonator geometries for ICE decoupling of loop arrays

Xinqiang Yan1,2, John C. Gore1,2,3, and William A. Grissom1,2,3

1Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States, 2Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States, 3Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States

To overcome B1 inhomogeneities and technological difficulties in building large-sized volume resonators, multi-channel arrays are commonly used for transmission at ultra-high fields. One of the main challenges in designing transmit arrays is to minimize the coupling among coil elements. The induced current elimination (ICE) method, which uses additional resonator elements to cancel coils’ mutual electromagnetic (EM) coupling, has proven to be a simple and efficient approach to decouple loop, stripline and dipole arrays. However, in previous embodiments the decoupling elements acted as “magnetic-walls”, blocking the magnetic field and leading to MR signal loss near the elements. In this study, we improved the ICE method to avoid the signal cancellation by using overlapped and perpendicular decoupling loops.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords