Meeting Banner
Abstract #4309

Optimization of the Receive Performance of a Tight-Fit Transceiver Phased Array for Human Brain Imaging at 9.4T.

Nikolai I. Avdievich1, Ioannis A. Giapitzakis1, and Anke Henning1,2

1Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2Institute of Physics, Ernst-Moritz-Arndt University, Greifswald, Germany

Tight-fit ultra-high field (UHF) (>7T) surface loop transceiver (TxRx)-phased arrays improve transmit (Tx) efficiency in comparison to Tx-only arrays built larger to accommodate for receive (Rx)-only array inserts. However, the number of elements in TxRx-arrays is restricted by the number of available RF Tx-channels (commonly 8 or 16), which limits the Rx-performance. A prototype of a 16-element array, which consists of 8 TxRx-surface loops circumscribing a head and 8 additional “vertical” Rx-only loops positioned in the center of each TxRx-loop perpendicularly, was constructed. This addition improves the Rx-performance substantially and has a minimal effect on both the Tx-efficiency and maximal local SAR.

This abstract and the presentation materials are available to members only; a login is required.

Join Here