Several strategies have been proposed for correcting physiological noise in rs-fMRI, including different models of respiratory volume (RV) and heart rate (HR) effects. Although group-level model optimization has often been employed, it has been reported that these effects are highly variable across subjects and brain regions. Here, we investigated the impact of optimizing the time-lags of RV and HR physiological noise contributions at different levels of specificity in 7 Tesla rs-fMRI. We found that a regional optimization based on a clustering approach taking into account the time-lags’ individual spatial variability explained more fMRI signal variance than group or subject-based optimizations.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords