Hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI) is a powerful metabolic technique, but it’s challenged by a rapid and irreversible decay of the signal that usually compromises its achievable spatial resolution. In this work we explore a way to improve this by utilizing a priori anatomical information derived from 1H MRI. Enhanced HP-MRSI implementations based on Spectroscopy with Linear Algebraic Modeling (SLAM) were thus assayed, to enhance HP-MRSI’s spatial resolution without compromising SNR. 13C experiments were performed in-vivo and pyruvate/lactate images reconstructed for physiological compartments by SLAM; we compare these results to those arising by traditional Fourier analyses.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords