Meeting Banner
Abstract #0195

Constrained Dipole Inversion for Quantitative Susceptibility Mapping Using a "Kernel+Sparse" Model

Xi Peng1,2, Yudu Li1,3, Fan Lam1, Rong Guo1,3, Bryan Clifford1,3, and Zhi-Pei Liang1,3

1Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 2Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen, China, 3Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States

In quantitative susceptibility mapping (QSM), constrained dipole inversion is often necessary to overcome the ill-posedness of the underlying dipole deconvolution problem. Existing methods achieve this by the use of spatial regularization. In this work, we propose a novel "kernel+sparse" model for constrained dipole inversion. In this model, the kernel term absorbs the prior information by representing the susceptibility as a function of prior features while the sparse term accounts for the localized novel features. The proposed method has been evaluated using both simulated and in vivo data, producing impressive results. This method may prove to be useful for many QSM studies.

This abstract and the presentation materials are available to members only; a login is required.

Join Here