The diagnosis of ADHD relies on psychiatrists’ knowledge and subjective experience. Many studies aimed to develop an objective method to assist diagnosis, but the performance of classification between ADHD and controls was not acceptable for clinical use. Here, we proposed a neural network model based on white matter information to classify ADHD and typically developing controls. Diffusion spectrum imaging and tract-based automatic analysis were used to measure properties of white matter. The neural network classification model was developed with high accuracy in the training and test data. It might be helpful to provide an objective way for diagnosis of ADHD.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords