Meeting Banner
Abstract #0296

SAR estimation error due to body model mismatch for fetal imaging at 3 Tesla

Filiz Yetisir1, Esra Abaci Turk1, Bastien Guerin2,3, Borjan Gagoski1, Natalie Copeland1, P. Ellen Grant1, Lawrence L. Wald2,3,4, and Elfar Adalsteinsson5,6

1Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, United States, 2A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States, 3Harvard Medical School, Boston, MA, United States, 4Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Boston, MA, United States, 5Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States, 6Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States

RF safety concerns have been raised for both the mother and the fetus for 3 T fetal MRI. Parallel transmission can address these concerns by reducing the maternal and fetal SAR however it also relies on one or more body models to predict that individual’s local SAR. In this work, we assess the range of error incurred when various pregnant or non-pregnant models are used to predict SAR in pregnant patients. We model the degree of over or underestimation of SAR in 56 combinations of model/patient and find a maximum SAR under/over-estimation of 59%/142%.

This abstract and the presentation materials are available to members only; a login is required.

Join Here