Meeting Banner
Abstract #0378

Chirp-Encoded 3D GRE and MPRAGE sequences

Kamlesh Pawar1,2, Zhaolin Chen1,3, Jingxin Zhang3,4, N Jon Shah1,5, and Gary F Egan1,2

1Monash Biomedical Imaging, Monash University, Melbourne, Australia, 2School of Psychological Sciences, Monash University, Melbourne, Australia, 3Department of Electrical and Computer System Engineering, Monash University, Melbourne, Australia, 4School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia, 5Institute of Medicine, Research Centre Juelich, Juelich, Germany

Non-Fourier encoding such as random, noiselets and chirp encoding have demonstrated image quality improvement in accelerated compressive sensing (CS) MRI applications. However, implementation of the non-Fourier encoding schemes in 2D spin echo sequence limits its use in practice, due to the fact that spin echo is inherently a slow sequence. In this work, we present a novel implementation of chirp encoding in fast 3D gradient echo (GRE) and MPRAGE sequences. The chirp encoding scheme is compared with conventional Fourier encoding for compressive sensing and susceptibility weighted imaging applications. The evaluation demonstrates that chirp encoding is able to preserve spatial resolution better than the Fourier encoding.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords