The feasibility of permittivity imaging relies on high precision of the underlying $$$\it{B_1^+}$$$ amplitude maps. We tested AFI, Bloch-Siegert and DREAM $$$\it{B_1^+}$$$ mapping techniques on a pelvic-sized phantom at 3T, comparing their SNR in $$$\it{B_1^+}$$$ maps and (resulting) permittivity precision. Our results indicated that the DREAM-based permittivity map was the most sensitive to sequence-related systematic errors. The commonly-used AFI technique, instead, was the least precise method. We also found that Bloch-Siegert is generally best suited for permittivity mapping compared to the other two methods, due to its higher $$$\it{B_1^+}$$$ precision and accuracy.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords