The use of a-priori anatomical information can effectively improve statistical analysis of neuroimaging data. In this work, we introduce a new method called Tract-Based Cluster Analysis (TBCA) that exploits the rich anatomical information present in a whole-brain tractogram to inform the cluster-level inference analysis of voxel-based images. The method is based on the novel concept of hyper-voxel which incorporates local and global anatomical information derived from tractography data. When applied to real clinical data TBCA demonstrates clear benefits compared to previous cluster-level inference approaches.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords