Meeting Banner
Abstract #1482

Inertial Cavitation Induced Magnetic Resonance Signal Changes in a Rat Model

Cheng-Tao Ho1, Chen-Hua Wu1, Po-Hung Hsu2, Hao-Li Liu3, Chih-Kuang Yeh1, Ching-Hsiang Fan1, Wen-Shiang Chen4,5, and Hsu-Hsia Peng1

1Department Of Biomedical Engineering And Environmental Sciences, National Tsing Hua University, Hsinchu City, Taiwan, 2Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan city, Taiwan, 3Department Of Electrical Engineering, Chang-gung University, Taoyuan city, Taiwan, 4Department Of Physical Medicine And Rehabilitation, National Taiwan University Hospital, Taipei city, Taiwan, 5Division Of Medical Engineering Research, National Health Research Institutes, Miaoli city, Taiwan

We aim to real-time monitor the inertial cavitation (IC)-induced signal intensity (SI) changes in the presence of microbubbles and explore the correlation between the extent of IC-induced SI changes and the location of blood–brain barrier opening in a rat model. The computed |slope| map illustrated the territory of tissue with substantial SI changes and was consistent with the difference map (calculated from T1WI with and without Gd) and Evens Blue dyed region. In conclusion, we verified the feasibility of using FLASH sequence to distinguish the location of BBB-opening through the computed |slope| map in a rat model.

This abstract and the presentation materials are available to members only; a login is required.

Join Here