Meeting Banner
Abstract #2131

Advanced MR imaging characterization of a novel in vivo xenograft model mimicking recurrent glioblastoma

Mona M Al-Gizawiy1, Robert T Wujek1, Melissa A Prah1, Hisham S Alhajala2, Ninh B Doan3, Jeffrey A Knipstein4,5, Jennifer M Connelly5,6, Shama P Mirza7, Christopher R Chitambar2, and Kathleen M Schmainda1,8

1Radiology, Medical College of Wisconsin, Milwaukee, WI, United States, 2Medicine, Medical College of Wisconsin, Milwaukee, WI, United States, 3Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States, 4Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States, 5Neuro-Oncology, Medical College of Wisconsin, Milwaukee, WI, United States, 6Neurology, Medical College of Wisconsin, Milwaukee, WI, United States, 7Chemistry & Biochemistry, University of Wisconsin, Milwaukee, WI, United States, 8Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States

We have developed a robust and reproducible rat xenograft model of recurrent GBM by irradiating adult and pediatric GBM cell lines in vitro prior to brain inoculation. Both advanced MR imaging and histological analyses highlight the amplified aggressiveness of the resultant tumor compared to the conventional U-87MG xenograft, as evidenced by profound vascularization and increased cell proliferation. Moreover, our recurrent GBM model exhibited invasive lesions with areas of infiltrating neutrophils and necrosis, all features that are not associated with conventional U-87MG xenograft tumors. Shortened survival of animals bearing irradiated U87-10Gy or SJGBM2-10Gy tumors further reinforces the aggressive nature of the model.

This abstract and the presentation materials are available to members only; a login is required.

Join Here