Meeting Banner
Abstract #2791

Deep Learning for Magnetic Resonance Fingerprinting: Accelerating the Reconstruction of Quantitative Relaxation Maps

Elisabeth Hoppe1, Gregor Körzdörfer2,3, Mathias Nittka2, Tobias Würfl1, Jens Wetzl1, Felix Lugauer1, Manuel Schneider1, Josef Pfeuffer2, and Andreas Maier1

1Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2Siemens Healthcare, Application Development, Erlangen, Germany, 3Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

This work demonstrates the successful application of Deep Learning with phantom and human measurements for the reconstruction in Magnetic Resonance Fingerprinting (MRF). State-of-the-art MRF reconstruction yields quantitative maps of e.g. T1 and T2 by acquiring multiple undersampled images with various acquisition parameters, commonly referred to as fingerprints. Every measured fingerprint (per voxel) is compared with a dictionary of simulated fingerprints for possible parameter combinations. This time-consuming step can be replaced with a neural network, which directly predicts the parameters from a fingerprint. This was previously shown with simulated data. Here, we extend this approach to real measurements.

This abstract and the presentation materials are available to members only; a login is required.

Join Here