Meeting Banner
Abstract #2809

Accelerating Non-Cartesian, Sparsity-Promoting Image Reconstruction Via Line Search FISTA

Matthew J. Muckley1, Jeffrey A. Fessler2, and Marcelo V. W. Zibetti1

1Center for Biomedical Imaging, New York University School of Medicine, New York, NY, United States, 2Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States

Iterative reconstruction algorithms for non-Cartesian MRI can have slow convergence due to the nonuniform density of k-space samples. Convergence speed can be improved by including the density compensation function into the algorithm, but current techniques for doing so can lead to SNR penalties or algorithm divergence. Here, we combine the use of density compensation with a line search under the MFISTA framework. The method has the convergence guarantees of MFISTA while gaining the speed improvements of using the density compensition function. The algorithm generalizes further to any FISTA algorithm.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords