Meeting Banner
Abstract #3329

Fully automated spatio-temporal segmentation approach for myocardium ischemic lesions detection and tissue classification

Clément Daviller1, Thomas Grenier1, Shivraman Giri2, Pierre Croisille3, and Magalie Viallon3

1Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621, Villeurbanne, France, Villeurbanne, France, 2Siemens Medical Solutions USA, Inc. Boston, USA., Boston, MA, United States, 3Univ Lyon, INSA‐Lyon, UJM-Saint Etienne, Université Claude Bernard Lyon 1,CNRS, Inserm, CREATIS UMR 5220, U1206, F-42023, SAINT-ETIENNE, France, Saint-Etienne, France

CMR Perfusion Imaging proved its role in patient triage, identifying visually ischemia and its capability in quantifying heart perfusion1,2, but failed to transfer this technology to clinical routine and to show how this worth information could be used to improve tissue lesions comprehension. Deconvolution techniques are sensitive to noise present on time intensity curves S(t), when observation scale decreases. Automated segmentation prior modelling would be a powerful adjunct. Indeed, prior tissue classification would optimize perfusion quantification accuracy since enabling advanced modelling leading to additional markers while reducing processing time. Such automated method is proposed here.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords