Meeting Banner
Abstract #3372

DL-POCS: Deep Learning Augmented POCS Reconstruction for Vastly Undersampled MR Data

Fang Liu1, Julia Velikina1, Richard Kijowski1, and Alexey Samsonov1

1Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States

We introduced a novel reconstruction framework by combining deep learning (DL) neural network with the Projections Onto Convex Sets (POCS) algorithm, termed DL-POCS. The image restoration from undersampled images was first performed by a convolutional encoder-decoder network. Then the output from deep learning was used as initialization and extra constraints were imposed to promote the POCS reconstruction. We evaluated this approach on vastly undersampled knee MR data and found that this combined approach is superior to each of individual components alone. Our study suggests that deep learning regularized image reconstruction will have a substantial impact on data-driven accelerated MR imaging.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords