The goal of this study is to assess the influence of image contrast, SNR and image content on the generalization of machine learning in MR image reconstruction. Experiments are performed with patient data from clinical knee MR exams as well as synthetic data created from a public image database. It shows that while SNR is a critical parameter, trainings can be generalized towards a range of SNR values. It also demonstrates that transfer learning can be used successfully to fine-tune trainings from synthetic data to a particular target application using only a very small number of training cases.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords