Meeting Banner
Abstract #3533

Robust Autocalibrated LORAKS for Improved EPI Ghost Correction with Structured Low-Rank Matrix Models

Rodrigo A Lobos1, Ahsan Javed1, Krishna S Nayak1, W Scott Hoge2,3, and Justin P Haldar1

1Electrical Engineering, University of Southern California, Los Angeles, CA, United States, 2Radiology, Brigham and Women's Hospital, Boston, MA, United States, 3Radiology, Harvard Medical School, Boston, MA, United States

The presence of ghost artifacts is a recurrent problem in EPI images, which has been recently addressed using structured low-rank matrix (SLM) methods. In this work we propose a new SLM ghost correction method called Robust Autocalibrated LORAKS (RAC-LORAKS). RAC-LORAKS considers autocalibrated k-space constraints (similar to GRAPPA) to deal with the ill-posedness of existing SLM EPI ghost correction methods. RAC-LORAKS additionally adapts these constraints to enable robustness to possible imperfections in the autocalibration data. We illustrate the capabilities of RAC-LORAKS in two challenging scenarios: highly accelerated EPI of the brain, and cardiac EPI with double-oblique slice orientation.

This abstract and the presentation materials are available to members only; a login is required.

Join Here