Meeting Banner
Abstract #4093

Wasserstein GAN for Motion Artifact Reduction of MR images

Sandro Braun1, Pascal Ceccaldi1, Xiao Chen1, Benjamin Odry1, Boris Mailhe1, and Mariappan Nadar1

1Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ, United States

Subject motion is a common artifact in MR acquisition that can severely degrade image quality. We take advantage of the recent advances in deep generative network to compensate motion and generate images of increased quality, measured by evaluating changes in MSSIM and normalized L2 distance (NRMSE). We trained an image to image network to predict motion compensated magnitude images given motion-corrupted input images, coupled with an adversarial network to help refine those predicted images. For the discriminator loss, we use the Wasserstein objective. The results suggest clear improvements on MSSIM and NRMSE metrics for the majority of cases.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords