Simultaneous EEG-fMRI offers rich multimodal information of brain activity. However, data quality is adversely affected by mutual interactions. Especially at higher magnetic fields, conductive scalp EEG components cause substantial transmit field disruption.
Here, electromagnetic field simulations and MR measurements at 7T performed on a realistic design of the wiring of a 64-channel EEG cap showed that transmit field attenuation and inhomogeneity are significantly reduced when wires are split into smaller lengths by resistors, suggesting a cancellation of resonant antenna effects. This offers an effective and practical solution to avoid EEG-induced MRI data degradation, maximizing the sensitivity benefits available at 7T.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords