Magnetic resonance fingerprinting (MRF) provides the opportunity for efficient quantification of ATP synthesis using 31P magnetization transfer (MT) spectroscopy. However, the multi-compartment, multi-parametric nature of 31P MT experiments renders dictionary-matching computationally infeasible. In this study, singular value decomposition was employed for parameter estimation in a 31P MRF study that quantified creatine kinase activity. Such approach allowed dictionary compression by 16 fold and accelerated parameter matching by up to 80% without compromising matching accuracy. In vivo experiments on rat hindlimb (N=21) showed a 2.7-fold increase in measurement efficiency comparing to the conventional MT method using saturation transfer.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords