Meeting Banner
Abstract #5465

Serial Correlations in fMRI Time-Series Arise from Non-Stochastic Signals Related to Brain Function

Kaundinya Gopinath1, Venkatagiri Krishnamurthy1, and K Sathian2,3

1Department of Radiology, Emory University, Atlanta, GA, United States, 2VA RR&D Center of Excellence, Atlanta VAMC, Decatur, GA, United States, 3Department of Neurology, Emory University, Atlanta, GA, United States

In this study, we first demonstrate using resting state fMRI (rsfMRI) “null” datasets, that serial correlation in fMRI time-series arises from non-stochastic signals (e.g., coordinated activity within brain function networks unrelated to the fMRI paradigm of interest). Using this principle, we then advance a method to obtain whitened GLM first-level analysis regression residuals in task fMRI studies, by accounting for non-stochastic brain signals through principal components analysis. Importantly, the proposed methods is insensitive to the temporal resolution of fMRI time-series, unlike conventional stochastic models of serial correlation, whose parameters have to be modified depending on fMRI scan-TR.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords