Meeting Banner
Abstract #0517

MR SPECTROSCOPY ARTIFACT REMOVAL WITH U-NET CONVOLUTIONAL NEURAL NETWORK

Nima Hatami1, Hélène Ratiney1, and Michaël Sdika1

1CREATIS, CNRS UMR 5220, Lyon, France

In in vivo MR spectroscopy, a variety of artifacts may affect spectral quality and are not easy to detect and remove by non-experts. A U-NET architecture is proposed to remove artifacts from MRS spectra with deep learning. The principle is demonstrated on synthetic simulated data mimicking in vivo conditions.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords