In this study we developed a convolutional neural network (CNN) for reconstructing 3D non-contrast magnetic resonance angiography (NC-MRA) images. We trained our proposed CNN using 4,800 zero-filled images and the corresponding GRASP reconstructed images from 10 patients as input and output, respectively. For validation, we used 6,720 zero-filled images from 14 patients as input to our trained CNN. Comparison between CNN and GRASP reconstructions showed excellent agreement using quantitative metrics and quantified aortic diameters . The mean reconstruction time, excluding the pre- and post-processing steps, for CNN (74 s) was 99% shorter than GRASP (12,703 s).
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords