Dictionary size limits the number of parameters one can aim to estimate with Magnetic Resonance Fingerprinting (MRF) Deep Neural networks (NN) have been recently proposed for MRF applications, both with numerical simulationsand with phantoms and in-vivo acquisitions. With real-valued NNs only the magnitude of the MRF signal has been considered as input. This choice releases from the need of considering the phase of the signal during training but can affect noise robustness and signal differentiation due to loss of information. In this work we propose a strategy to train a real valued NN that takes the real and imaginary parts of an MRF-FISP signal as input. We also propose to use SVD as preprocessing step for noise reduction. The presented results may help the developing of deep learning approaches for MRF, pushing fingerprinting pulse sequences design to add more meaningful MR parameters, such as diffusion, with no more limitations due to the dictionary size.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords