We developed a novel method to generate 3D isotropic super-resolution prostate MR images using a class of machine learning algorithms known as Generative Adversarial Networks (GANs). We use GANs to generate super-resolution images with 3D SVR image slices as inputs. Super-resolution is enforced as the discriminator network is trained to distinguish the output image from in-plane T2 FSE images, resulting in the generation of super-resolution images. We use unpaired GANs since slices of 3D SVR do not usually have corresponding super-resolution images. The result is a generated continuous 3D volume with super-resolution throughout all three planes in isotropic voxel size.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords