Determining depth in human colliculi is prone to errors due to its rapidly varying curvature. Thus, Euclidean definitions of depth fall short in describing the topography of deep collicular tissue. We developed a method of surface-based depth mapping that calculates a depth coordinate using an algebraic level-set method. We then generated kernels based on this level-set depth that sample functional data in a nonlinear trajectory with increasing depth. Using this method, we re-analyzed data on polar-angle representation of saccadic eye movements and were able to produce smoother laminar profiles that confirmed distinct depth-dependence of saccade-evoked activity.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords