Meeting Banner
Abstract #1962

Deep Spatiotemporal Phase Unwrapping of Phase-Contrast MRI Data

Jiacheng Jason He1, Christopher Sandino1, David Zeng1, Shreyas Vasanawala1,2, and Joseph Cheng2

1Electrical Engineering, Stanford University, Stanford, CA, United States, 2Radiology, Stanford University, Stanford, CA, United States

This work demonstrates the advantage temporal information provides for deep phase unwrapping of phase-contrast MRI data. Using a patch-based, three-dimensional ResNet architecture, our model performs better than state-of-the-art single-step algorithms. Our deep spatiotemporal phase unwrapping model continues the quest to lower Venc values to increase dynamic range and velocity-to-noise ratio (VNR) of 4D flow data by providing a robust method for phase unwrapping.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords