Meeting Banner
Abstract #2224

Left Ventricle Segmentation with Densely Connected Full Convolutional Network

Zhanli Hu1, Yin Wu1, Siyue Li1, Wenjian Qin1, Dong Liang1, Xin Liu1, Yongfeng Yang1, and Hairong Zheng1

1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Cardiac functional analysis is important in heart disease diagnosis. Conventional manual segmentation of left ventricle is time consuming and observer dependent. Our proposed Densely Connected Full Convolutional Network (DenseV-Net) enables automatically process medical images. Its densely connected convolutional block consists of residual calculation with Elu used as active function. The results show that the proposed DenseV-Net can efficiently segment left ventricle from cardiac cines with mean DSC of 0.90±0.12, more accurate compared to V-Net (0.85±0.13, P<0.05). The method offers a feasible way for efficient analysis of cardiac function.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords