The most common analysis of structural brain MRIs involves massively univariate modelling. Such analyses separately approach different levels of resolution (whole brain, regional, and voxel) and do not provide an easy solution to understanding whether some areas of the brain are more or less affected than others. Here we explore applying hierarchical bayesian modelling to simultaneously analyze brain MRI studies at multiple levels of resolution while allowing for the explicit interrogation of whether brain areas are differentially affected. In addition, we show that hierarchical modelling provides improved parameter recapture, sign error rate, and model fit.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords