Automated brain segmentation approaches are increasingly being used for decision support in routine clinical settings. While segmentation may be considered a “solved problem” in research, it is still challenging to assure reliable performance of automated tools in clinical settings, which is a crucial requirement for diagnostic tools. To ensure correct results, automated quality control procedures are of vital importance, but they are often difficult to implement or time-consuming to run. We propose a simple and fast fully automated method to detect segmentation errors, and we evaluate its performance to detect skull-stripping-errors using results of two different brain segmentation algorithms on a large multicenter dataset. Results show that the method is able to detect skull-stripping-errors with high specificity.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords