The oxygen extraction fraction (OEF) is a promising biomarker for cerebral tissue vitality. Combining quantitative blood oxygenation level-dependent (qBOLD) modelling and quantitative susceptibility mapping (QSM) from gradient echo (GRE) data revealed promising results but still suffered from biases in white matter and required good parameter initialization. We showed that using an additional gradient echo sampling of spin echo (GESSE) sequence enables OEF reconstruction with higher accuracy, precision and robustness to parameter initialization in simulation. Yet, this increased robustness did still not allow for parameter initialization without prior knowledge of local distributions in vivo, which lead to a non-physiological gray-white matter contrast in the OEF.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords