Meeting Banner
Abstract #3348

Super-Resolution Diffusion Imaging using Deep Learning: A Feasibility Study

Nahla M H Elsaid1,2 and Yu-Chien Wu1,2

1Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indiana University, Indianapolis, IN, United States, 2Indiana Alzheimer Disease Center, Indianapolis, IN, United States

In this study, we present and validate the efficacy of using a state-of-the-art deep-learning method to achieve submillimeter high-resolution diffusion-weighted (DW) images. The 2D-based deep-learning method was validated by comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) of the deep-learning high-resolution images and the ground-truth.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords