Meeting Banner
Abstract #3359

Deep learning for DSI parameter map generation without image pre-processing

Eric Kenneth Gibbons1, Kyler K. Hodgson2, Ganesh Adluru1, and Edward VR DiBella1

1Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States, 2Bioengineering, University of Utah, Salt Lake City, UT, United States

Recent advances in diffusion spectrum imaging (DSI) have reduced scan time considerably. Through the use of deep learning, DSI parameter maps (NODDI, GFA, etc.) can be generated with only a fraction of the number of q-space samples compared to conventional acquisition strategies. However, image pre-processing prior to the deep learning parameter map generation step is a computational bottleneck. This abstract explores if this bottleneck can be bypassed entirely and use images straight from the scanner as CNN inputs. We show that the image pre-processing is not necessary to generate NODDI and GFA parameter maps--thereby avoiding the image processing computation time.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords