Meeting Banner
Abstract #3535

What are the consequences of ignoring non-Gaussian diffusion in models of convection-enhanced drug delivery to the human brain?

Eirini Messaritaki1, S Umesh Rudrapatna2, Najmus S Iqbal1, Hannah Furby1,2,3, Emma Yhnell1, Claudia Metzler-Baddeley2, William P Gray1, and Derek K Jones2,4

1Medicine, Cardiff University, Cardiff, United Kingdom, 2Psychology, Cardiff University, Cardiff, United Kingdom, 3Huntington's Disease Centre, UCL, London, United Kingdom, 4Psychology, Australian Catholic University, Melbourne, Australia

Convection-enhanced drug delivery to the human brain is a promising method for treating neurodegenerative diseases and brain tumors. Accurate predictions of the drug concentration via computational fluid dynamics models are essential, and models not accounting for diffusion non-Gaussianity give predictions that are not in good enough agreement with experimental results. We use a fluid dynamics model recently presented in the literature, which accounts for diffusion non-Gaussianity, to calculate the differences with models that do not account for it, in data from pre-symptomatic Huntington’s disease patients and metastatic brain tumor patients. We make recommendations on the use of fluid dynamics models in the clinical setting.

This abstract and the presentation materials are available to members only; a login is required.

Join Here