Multi-center clinical trials utilizing quantitative diffusion kurtosis imaging (DKI) protocols require accurate, precise, and stable phantoms for validation of derived imaging metrics. This study examines the precision and reproducibility of isotropic (i)DKI parameters obtained from a phantom based on nanostructured vesicles that restrict diffusion and mimic tissue cellularity. Ten test-retest iDKI studies were performed on four scanners at three imaging centers over a six-month period. The tested prototype phantoms exhibited physiologically-relevant and highly-repeatable apparent diffusion and kurtosis parameters. Achieved precision was sufficient to characterize thermal and temporal stability trends to guide robust quantitative iDKI phantom production.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords