Meeting Banner
Abstract #3760

Cortical depth- and feature-dependent intrinsic functional connectivity in human visual and auditory cortices

Pu-Yeh Wu1, Hsin-Ju Lee1,2, Jyrki Ahveninen3, Jonathan R Polimeni3, Hesheng Liu3, Wen-Jui Kuo2, and Fa-Hsuan Lin1,4,5

1National Taiwan University, Taipei, Taiwan, 2National Yang-Ming University, Taipei, Taiwan, 3Department of Radiology, Harvard Medical School - Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States, 4Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada, 5Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland

This study reveals the tonotopy- and retinotopy-dependent intrinsic functional connectivity (iFC) across cortical depths in the human auditory and visual cortieces, respectively. Using 7T fMRI data with 1-mm isotripic resolution, we demonstrated that feature-dependent iFC have a higher selectivity in the primary sensory than in the secondary sensory area. The selectivity was generally higher as we moved from superficial to deep cortical depths, while the difference between the primary sensory and secondary sensory area was more prominent in the intermediate cortical depth.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords