Meeting Banner
Abstract #4422

Six-direction diffusion tensor MRI using a convolutional neural network

Qiyuan Tian1, Berkin Bilgic1,2, Qiuyun Fan1, Chanon Ngamsombat1, Congyu Liao1, Yuxin Hu3, Thomas Witzel1, Kawin Setsompop1,2, Jonathan R Polimeni1,2, and Susie Y Huang1,2

1Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States, 2Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States, 3Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States

Diffusion tensor imaging (DTI) is widely used for clinical neuroimaging and neuroscientific research but has traditionally suffered from relatively length acquisition. Here, we propose a new approach to obtain both scalar and orientational DTI metrics from six diffusion-weighted images with optimal directional encoding. Through the careful choice of diffusion directions, we compute initial tensor results that are then denoised using a convolutional neural network. Our results provide comparable scalar and orientational DTI metric maps to those acquired with 90 directions.

This abstract and the presentation materials are available to members only; a login is required.

Join Here