Cortical reconstruction is prone to failure without high quality structural imaging data. Here, motion simulation was performed on good quality structural MRI images and used to train a regression convolutional neural network to predict the motion-free images as the output. We show that performing retrospective motion correction using a convolutional neural network is able to significantly reduce the number of cortical surface reconstruction quality control failures.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords