Meeting Banner
Abstract #4435

High resolution 3D GRASE BLADE Arterial Spin Labelling sequence: evaluation of the performance with various level of motion: simulations and validation in volunteers and patients

Manjunathan NANJAPPA1,2, Thomas Troalen2, Matthias Günther3,4,5, Magalie Viallon1,6, and Huber Jörn3

1University of Lyon, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Lyon, France, 2Siemens Healthcare SAS, Saint-Denis, France, 3Fraunhofer MEVIS, Bremen, Germany, 4University Bremen, Bremen, Germany, 5Mediri GmbH, Heidelberg, Germany, 6Radiology Department, University Hospital of Saint Etienne, Saint Etienne, France

In MRI, longitudinal acquisition protocols such as arterial spin labeling are susceptible to patient motion; this work focused on implementing 3D GRASE with BLADE readout trajectory as an alternative to Cartesian readout to increase robustness of sequence with regards to motion. Virtual data simulation and involuntary patient motion data were used to evaluate the performance of this approach with different levels of patient motion. Image reconstruction embedded with self-referenced custom rigid motion correction algorithm was developed and tested on both simulated and patient data. Results confirming superiority of SNR and motion correction capabilities offered by Blade strategy over Cartesian.

This abstract and the presentation materials are available to members only; a login is required.

Join Here