A mutual information-based mathematical framework is developed to quantify the information content of various acquisition parameters and subsampling approaches. A recursive conditional formulation quantifies information content given previous acquisitions. This framework is applied to 3D QALAS. Mutual information between reconstructed M0, T1, and T2 uncertainty and measurement noise is calculated for an in silico phantom and the results applied to measurements on a System Standard Model 130 phantom. Reconstructions from these measurements demonstrate the potential use of information theory in guiding pulse sequence design to maximize reconstruction quality.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords