Meeting Banner
Abstract #4531

MR Fingerprinting SChedule Optimization NEtwork (MRF-SCONE)

Ouri Cohen1

1Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States

MR Fingerprinting schedule optimization can reduce scan times and improve accuracy but typically relies on minimization of indirect metrics rather than the actual reconstruction error due to the computational challenges involved in calculating the reconstruction error at each iteration of the optimization. Here we introduce a Deep Learning framework that can overcome these challenges and allow direct minimization of the reconstruction error. The proof-of-principle is demonstrated using simulations on a numerical brain phantom.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords