Meeting Banner
Abstract #4585

Wave-CAIPI accelerated whole brain structure imaging using three-dimensional T1 weighted SPACE sequence

Zhilang Qiu1, Sen Jia1, Haifeng Wang1, Xin Liu1, Hairong Zheng1, and Dong Liang1,2

1Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 2Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

Three-dimensional (3D) SPACE (sampling perfection with application optimized contrast using different flip angle evolutions) sequences are the workhorse for volume imaging with isotropic spatial resolution. However, spatial resolution is often scarified to achieve clinically acceptable scan time. Conventional one- and two-dimensional parallel imaging techniques could help reducing the scan time but would lead to deteriorated signal-to-noise (SNR) performance at submillimeter spatial resolutions. In this study, three-dimensional parallel imaging technique-Wave-CAIPI is utilized to improve the SNR performance for whole brain SPACE imaging with isotropic 0.6 mm resolution. In vivo results demonstrated that Wave-CAIPI could improve the SNR at 5x acceleration.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords