Free-breathing 3D abdominal imaging is challenging since respiratory motion can produce image blurring and ghosting artifact. Our purpose is to employ a novel deep learning method using conditional generative adversarial network (GAN) to reconstruct the undersampled radial 3D abdominal MRI. The whole network combines a generator G consists of 8 convolutional layers and corresponding 8 deconvolutional layers with a discriminator D which is formed using 11 convolutional layers. The GAN-based reconstructed images achieve similar quality to the ground-truth images. Additionally, the average reconstruction time is negligible. Therefore, this method can be adopted for a wide range of clinical applications.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords