Meeting Banner
Abstract #4615

Cascaded Deep Learning Networks for Automated Image Quality Evaluation of Structural Brain MRI

SHEEBA SUJIT1, REFAAT GABR1, IVAN CORONADO1, and PONNADA NARAYANA1

1Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, TX, United States

Visual quality assessment of MRI is subjective and impractical for large datasets. In this study, we present a cascaded convolutional neural network (CNN) model for automated image quality evaluation of structural brain MRI. The multisite Autism Brain Imaging Data Exchange dataset of ~1000 subjects was used to train and evaluate the proposed model. The model performance was compared with expert evaluation. The first network rated individual slices, and the second network combined the slice ratings into a final image score. The network achieved 74% accuracy, 69% sensitivity, and 74% specificity, demonstrating that deep learning can provide robust image quality evaluation.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords