In this work, we demonstrate the distinction and importance of two virtual time points during excitation for correct flow compensation and quantification: the centre of excitation ($$$t_0^\text{m}$$$) at which spins are excited and thus magnitude is generated, and the isophase time-point ($$$t_0^\text{ph}$$$) at which all excited spins are in phase. A general method to determine $$$t_0^\text{m}$$$ is presented and $$$t_0^\text{ph}$$$ and $$$t_0^\text{m}$$$ are shown to be not necessarily identical. Finally, phantom experiments demonstrate that the knowledge of $$$t_0^\text{m}$$$ is required to remove the displacement artefact in phase-encoding directions to enable correct flow compensation and imaging.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords