Meeting Banner
Abstract #4648

Unpaired Super-Resolution GANs for MR Image Reconstruction

Ke Lei1, Morteza Mardani1,2, Shreyas Vasawanala2, and John Pauly1

1Electrical Engineering, Stanford University, Stanford, CA, United States, 2Radiology, Stanford University, Stanford, CA, United States

While undersampled MRI data is easy to obtain, lack of high-quality labels for dynamic organs impedes the common supervised training of deep neural nets for MRI reconstruction. We propose an unpaired training super-resolution model with pure GAN loss to use a minimal amount of labels but all available low-quality data for training. Leveraging Wasserstein-GANs with gradient penalty followed by a data-consistency refinement high-quality Knee MR images are recovered from 3-fold undersampled single coil measurements using 20% of the labels compared with a paired training model.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords