While undersampled MRI data is easy to obtain, lack of high-quality labels for dynamic organs impedes the common supervised training of deep neural nets for MRI reconstruction. We propose an unpaired training super-resolution model with pure GAN loss to use a minimal amount of labels but all available low-quality data for training. Leveraging Wasserstein-GANs with gradient penalty followed by a data-consistency refinement high-quality Knee MR images are recovered from 3-fold undersampled single coil measurements using 20% of the labels compared with a paired training model.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords