Meeting Banner
Abstract #4651

W-net: A Hybrid Compressed Sensing MR Reconstruction Model

Roberto Souza1,2 and Richard Frayne1,2

1Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada, 2Seaman Family MR Centre, Foothills Medical Centre, Calgary, AB, Canada

Compressed sensing (CS) magnetic resonance (MR) imaging acquisitions reduce MR exam times by decreasing the amount of data acquired during acquisition, while still reconstructing high quality images. Deep learning methods have the advantage of reconstructing images in a single step as opposed to iterative (and slower) CS methods. Our proposal aims to leverage information from both k-space and image domains, in contrast to most other deep-learning methods that only use image domain information. We compare our W-net model against four recently published deep-learning-based methods. We achieved second best results in the quantitative analysis, but with more visually pleasing reconstructions.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords